21,273 research outputs found

    An Integrated Framework for Sensing Radio Frequency Spectrum Attacks on Medical Delivery Drones

    Full text link
    Drone susceptibility to jamming or spoofing attacks of GPS, RF, Wi-Fi, and operator signals presents a danger to future medical delivery systems. A detection framework capable of sensing attacks on drones could provide the capability for active responses. The identification of interference attacks has applicability in medical delivery, disaster zone relief, and FAA enforcement against illegal jamming activities. A gap exists in the literature for solo or swarm-based drones to identify radio frequency spectrum attacks. Any non-delivery specific function, such as attack sensing, added to a drone involves a weight increase and additional complexity; therefore, the value must exceed the disadvantages. Medical delivery, high-value cargo, and disaster zone applications could present a value proposition which overcomes the additional costs. The paper examines types of attacks against drones and describes a framework for designing an attack detection system with active response capabilities for improving the reliability of delivery and other medical applications.Comment: 7 pages, 1 figures, 5 table

    Systematic study of the symmetry energy coefficient in finite nuclei

    Full text link
    The symmetry energy coefficients in finite nuclei have been studied systematically with a covariant density functional theory (DFT) and compared with the values calculated using several available mass tables. Due to the contamination of shell effect, the nuclear symmetry energy coefficients extracted from the binding energies have large fluctuations around the nuclei with double magic numbers. The size of this contamination is shown to be smaller for the nuclei with larger isospin value. After subtracting the shell effect with the Strutinsky method, the obtained nuclear symmetry energy coefficients with different isospin values are shown to decrease smoothly with the mass number AA and are subsequently fitted to the relation 4asymA=bvA−bsA4/3\dfrac{4a_{\rm sym}}{A}=\dfrac{b_v}{A}-\dfrac{b_s}{A^{4/3}}. The resultant volume bvb_v and surface bsb_s coefficients from axially deformed covariant DFT calculations are 121.73121.73 and 197.98197.98 MeV respectively. The ratio bs/bv=1.63b_s/b_v=1.63 is in good agreement with the value derived from the previous calculations with the non-relativistic Skyrme energy functionals. The coefficients bvb_v and bsb_s corresponding to several available mass tables are also extracted. It is shown that there is a strong linear correlation between the volume bvb_v and surface bsb_s coefficients and the ratios bs/bvb_s/b_v are in between 1.6−2.01.6-2.0 for all the cases.Comment: 16 pages, 6 figure

    Analyzing Competing Risk Data Using the R timereg Package

    Get PDF
    In this paper we describe flexible competing risks regression models using the comp.risk() function available in the timereg package for R based on Scheike et al. (2008). Regression models are specified for the transition probabilities, that is the cumulative incidence in the competing risks setting. The model contains the Fine and Gray (1999) model as a special case. This can be used to do goodness-of-fit test for the subdistribution hazardsâ proportionality assumption (Scheike and Zhang 2008). The program can also construct confidence bands for predicted cumulative incidence curves. We apply the methods to data on follicular cell lymphoma from Pintilie (2007), where the competing risks are disease relapse and death without relapse. There is important non-proportionality present in the data, and it is demonstrated how one can analyze these data using the flexible regression models.

    Does a proton "bubble" structure exist in the low-lying states of 34Si?

    Full text link
    The possible existence of a "bubble" structure in the proton density of 34^{34}Si has recently attracted a lot of research interest. To examine the existence of the "bubble" structure in low-lying states, we establish a relativistic version of configuration mixing of both particle number and angular momentum projected quadrupole deformed mean-field states and apply this state-of-the-art beyond relativistic mean-field method to study the density distribution of the low-lying states in 34^{34}Si. An excellent agreement with the data of low-spin spectrum and electric multipole transition strengths is achieved without introducing any parameters. We find that the central depression in the proton density is quenched by dynamic quadrupole shape fluctuation, but not as significantly as what has been found in a beyond non-relativistic mean-field study. Our results suggest that the existence of proton "bubble" structure in the low-lying excited 02+0^+_2 and 21+2^+_1 states is very unlikely.Comment: 6 pages, 8 figures and 1 table, accepted for publication in Physics Letters
    • …
    corecore